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Influence of additive noise on transitions in nonlinear systems

P. S. Landa,1 A. A. Zaikin,2 V. G. Ushakov,1 and J. Kurths2
1Lomonosov Moscow State University, 119899 Moscow, Russia
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The effect of additive noise on transitions in nonlinear systems far from equilibrium is studied. It is shown
that additive noise in itself can induce a hidden phase transition, which is similar to the transition induced by
multiplicative noise in a nonlinear oscillator@P. Landa and A. Zaikin, Phys. Rev. E54, 3535~1996!#. Inves-
tigation of different nonlinear models that demonstrate phase transitions induced by multiplicative noise shows
that the influence of additive noise upon such phase transitions can be crucial: additive noise can either blur
such a transition or stabilize noise-induced oscillations.

PACS number~s!: 05.40.2a, 05.70.Fh
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I. INTRODUCTION

Noise-induced transitions occupy an important pla
among phenomena that demonstrate a strong influenc
weak noise on the behavior of a system@2#; e.g.,stochastic
resonance@3–5#, noise-induced transport@6#, coherence
resonance@7# or noise-induced pattern formation@8#. Inten-
sive investigations of recent years have shown that no
induced phase transitions can manifest themselves in the
pearance of new extrema in the system probabi
distribution @9,10#, in the creation of a mean field@11–13#,
and in the excitation of oscillations@1,14,15#. The last two
types of transitions@16# have been termed nonequilibrium
noise-induced phase transitions@17,1#.

In these and other works multiplicative noise is perceiv
to be responsible for the transitions. However, as has b
recently shown in@18–20#, additive noise plays a crucial rol
in these transitions. Hence, studying the influence of addi
noise is of great importance. In this paper we study sev
major aspects of the influence of additive noise by consid
ation of typical models in which a transition leads to nois
induced oscillations.

First, we study a transition induced by multiplicativ
noise in the presence of additive noise. We investigate su
transition theoretically and numerically in a pendulum w
randomly vibrating suspension axis. In this model the ad
tive noise blurs the transition induced by multiplicativ
noise. The pendulum is a key model for understanding
other effect: a hidden phase transition induced purely by
ditive noise. We demonstrate it for an oscillator with qu
dratic nonlinearity and random force by showing th
autoparametrical excitation occurs due to the additive no
and quadratic nonlinearity. At the same time the presenc
additive noise makes this transition hidden. The mechan
of this transition is similar to subharmonic resonance@14#.
Another mechanism, combination resonance, can also be
sociated with a phase transition induced by additive no
This mechanism is illustrated by an electromechanical vib
tor energized from a source of sufficiently high-frequen
random current in place of a periodic source@21,14#. The
combination resonance is caused by nonlinear interactio
random oscillations of the source current and the oscillati
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induced in the high-frequency subsystem. Then we cons
a standard epidemiological model@22–24# with a random
action and show that this action can be split into additive a
multiplicative parts. In contrast to the pendulum, here
transition can be induced by both additive and multiplicat
noise. The mechanisms are likely to be the same as in
oscillator with quadratic nonlinearity and in the pendulu
respectively. The combined action of additive and multip
cative noise in this system extends the range of the par
eters where noise-induced oscillations are stable, so we
terpret this phenomenon as stabilization of noise-indu
oscillations by additive noise.

The organization of the paper is as follows. In Sec. II w
consider a pendulum with multiplicative and additive nois
which demonstrates a phase transition induced by multi
cative and influenced by additive noise. In Sec. III syste
with additive noise alone are considered: an oscillator w
quadratic nonlinearity and an electromechanical vibra
Section IV is devoted to the study of transitions induced
both additive and multiplicative noise and of the stabilizi
influence of additive noise in an epidemiological model.
Sec. V we summarize the results obtained.

II. NOISE-INDUCED PHASE TRANSITIONS
IN THE PRESENCE OF ADDITIVE NOISE

First, we study the problem of excitation of a nonline
oscillator under parametric and forcing random actions.
give an approximate analytical solution of this problem
reveal the influence of additive noise on a phase transi
induced by multiplicative noise in a pendulum with a ra
domly vibrated suspension axis. In the absence of addi
noise such a transition has been considered in@1,25#. It
should be noted that the additive constituent of noise app
by itself if the vibration of the pendulum’s suspension ax
occurs in a certain direction making a nonzero angle with
vertical @18#.

In the presence of additive noise the equation of mot
for this system can be written as

ẅ12b~11aẇ2!ẇ1v0
2@11j1~ t !#sinw5v0

2j2~ t !, ~1!
4809 ©2000 The American Physical Society
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wherew is the pendulum’s angular deviation from the eq
librium position,v0 is the natural frequency of a small fre
pendulum’s oscillations,b is the damping factor,a is the
coefficient of nonlinear friction, andj1(t) and j2(t) are
comparatively broadband random processes with zero m
values. We assume that the suspension axis vibration is m
erately small in amplitude, i.e., the pendulum oscillations c
be considered small enough forw to be substituted in place
of sin w in Eq. ~1!.

An approximate analytical solution of this problem can
obtained from the assumptions thatb/v0;e, j1(t);Ae,
and j2(t);Ae, wheree is a certain small parameter whic
should be put equal to unity in the final results. Equation~1!
can then be solved by the Krylov-Bogolyubov method; to
this we set w5A(t)cosc(t)1eu11¯ , where c(t)5v0t
1f(t),

Ȧ5e f 11¯ , ḟ5eF11¯ , ~2!

andu1 ,...,f 1 ,...,F1 ,... areunknown functions. By using the
Krylov-Bogolyuov technique for stochastic equations~see
@26#!, we find expressions for the unknown functionsf 1 and
F1 . Substituting these expressions into Eqs.~2! we obtain

Ȧ52b~11 3
4 av0

2A2!A1v0g1„A,v~ t !,j1~ t !,j2~ t !…,
~3!

ḟ5v0g2„A,c~ t !,j1~ t !,j2~ t !…, ~4!

where

g1~A,f,t !5
A

2
j1~ t !sin 2c~ t !2j2~ t !sinc~ t !,

g2~A,f,t !5j1~ t !cos2 c~ t !2
1

A
j2~ t !cosc~ t !.

The bar over an expression denotes averaging over time
As follows from @26#, the Fokker-Planck equation assoc

ated with Eqs.~3! and ~4! is

]w~A,f,t !

]t
52

]

]A
$@2b~11 3

4 av0
2A2!A1v0

2R1#

3w~A,f,t !%2v0
2R2

]w~A,f,t !

]f
1

v0
2

2

3H ]2

]A2 F S K11

4
A21K12Dw~A,f,t !G

1S K211
K22

A2 D ]2w~A,f,t !

]f2 J , ~5!

where
an
d-
n

R15E
2`

0 S K ]g1~A,f,t !

]A
g1~A,f,t1t!L

1K ]g1~A,f,t !

]f
g2~A,f,t1t!L D dt, ~6!

R25E
2`

0 S K ]g2~A,f,t !

]A
g1~A,f,t1t!L

1K ]g2~A,f,t !

]f
g2~A,f,t1t!L D dt, ~7!

~the angular brackets denoting averaging over the statis
ensemble!,

K115
1
2 kj1

~2v0!, K125
1
2 kj2

~v0!, ~8!

K215
1
4 @kj1

~0!1 1
2 kj1

~2v0!#,

K225
1
4 @kj2

~0!1 1
2 kj2

~v0!#, ~9!

and

kj~v!5E
2`

`

^j~ t !j~ t1t!&cosvtdt

is the power spectrum density of the processj(t) at the
frequencyv.

Let us now calculate the integrals~6! and~7!, taking into
account the expressions forg1 andg2 . As a result, we obtain

FIG. 1. The influence of additive noise on a noise-induced ph
transition in a pendulum with randomly vibrated suspension a
The dependence of the valuea^A2&, which is proportional to the
mean amplitude squared, onh without additive noiseq050 and
with additive noiseq050.005 and 0.02 for curves 1–3 respective
Theoretical~solid lines! and numerical results~symbols!. In the
presence of additive noise the dependence is smooth. The rema
parameters areb50.1, a5100, andv051.
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R15
3A

8 E
2`

0

^j1~ t !j1~ t1t!&cos 2v0tdt

1
1

2A E
2`

0

^j2~ t !j2~ t1t!&cosv0tdt

5
3K11

8
A1

K12

2A
, ~10!

R25
1

4 E2`

0

^j1~ t !j1~ t1t!&sin 2v0tdt

2
1

A2 E2`

0

^j2~ t !j2~ t1t!&sinv0tdt. ~11!

The value ofR2 depends on the characteristics of the rand
processesj1(t) and j2(t): if they are white noises thenR2
50; but if, for example,j2(t) is white noise andj1(t) has a
finite correlation time and its power spectrum density is

kj1
~v!5

a1
2kj1

~2v0!

~v22v0!21a1
2 ,

then

R252
a1v0kj1

~2v0!

4~16v0
21a1

2!
.

It should be noted that in this caseR2 is negative, which
results in a decrease of the mean oscillation frequency w
-
-

-
o

th

increasing noise intensity. The Langevin equations wh
can be related to the Fokker-Planck equation~5! in view of
Eqs.~10! and ~11! are presented in Appendix A.

First we considerthe case when additive noise is abse,
i.e., kj2

[0. In this case the steady-state solution of Eq.~5!,
satisfying the condition of zero probability flux, is

w~A,f!5
C

2pA2 expF 3

11h S h ln A2
aA2

2 D G , ~12!

where a53av0
2/4 is the nonlinear parameter andh

53v0
2K11/8b21. The constantC is determined from the

normalization condition

E
0

2pE
0

`

w~A,f!AdAdf51.

Upon integrating Eq.~12! overf, we find the expression fo
the probability densityw of the oscillation amplitude:

w~A!5CA~2h21!/~11h! expS 2
3aA2

2~11h! D . ~13!

From the normalization condition we get

C523H S 3a

2~11h! D
3h/2~11h! 1

G„3h/2~11h!…
for h>0

0 for h<0.
~14!

Hence,
w~A!523H S 3a

2~11h! D
3h/2~11h! A~2h21!/~11h!

G„3h/2~11h!…
expS 2

3aA2

2~11h! D for h>0

d~A! for h<0.

~15!
he
red

an

s
the

e
its
The fact that forh<0 the probability density of the ampli
tude turns out to be ad function is associated with the ab
sence of additive noise~see below!.

Using Eq.~15!, we can determinêA& and ^A2&:

^A&5HA 3

2a~11h!

G„~4h11!/2~11h!…

G„3h/2~11h!11…
h for h>0

0 for h<0,
~16!

^A2&5H h

a
for h>0

0 for h<0.

~17!

Therefore, it is evident that forh.0 the parametric excita
tion of pendulum oscillations occurs under the influence
 f

multiplicative noise. This manifests itself in the fact that t
mean values of the amplitude and of the amplitude squa
become nonzero~Fig. 1, curve 1!. This parametric excitation
implies a transition of the system to a new state, which c
be treated as a phase transition. The conditionh50 is the
threshold for the onset of this phase transition. It follow
that, in the absence of additive noise, the critical value of
multiplicative noise intensity is

kj
cr~2v0![kcr5

16b

3v0
2 . ~18!

Hence, the parameterh characterizes the extent to which th
intensity of the multiplicative noise component exceeds
critical value.

It should be noted that, forh.0, the steady stateA50
loses its stability and the stateAÞ0 becomes stable. At the
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same time, Eq.~15! implies that the probability density ofA2

is monotonically decreasing with increasingA2 for any value
of h.0. Hence, in contrast to the transitions considered
@9#, the appearance of a new stable state need not be ac
panied by the appearance of a new maximum in the sys
probability distribution@see Fig. 2~a!#.

Now let us considerthe case when the intensity of add
tive noise is not equal to zero. The steady-state solution o
Eq. ~5!, satisfying the condition of zero probability flux, i
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conveniently written as

w~A,f!5
Ca

2p~aA21q!
expF E 3~h2aA2!aA21q

~11h!~aA21q!A
dAG ,

~19!

whereq54aK12/K11 characterizes the ratio between the i
tensities of additive and multiplicative noise.

Following the calculations presented in Appendix B, w
get an expression for
a^A2&'~11h!H 4m

3
G~2m!G~ 3

2 22m!~112m!S 2~122m!1~524m!
3q

2~11h! D2
3q

2~11h!

3FApG~22m!~122m!S 3q

2~11h! D
2m

12G~2m!G~ 3
2 22m!~112m!G J FAp

2
G~22m!~122m!S 3q

2~11h! D
2m

3S 2~112m!1
9q

2~11h! D1G~2m!G~ 3
2 22m!~112m!S 2~122m!1

3~324m!q

2~11h! D G21

, ~20!
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wherem53(h1q)/4(11h). Note that, similarly to the cas
without additive noise, after a transition no addition
maxima appear in the system probability distribution and
shape of this distribution is not qualitatively changed@Fig.
2~b!#.

Next we compare these analytical results with numer
simulations. The corresponding dependence ofa^A2& on h
for different values of the parameterq0 is illustrated in Fig.
1. We see that additive noise of small intensity results i
smoothing of the dependence of the mean oscillation am
tude squared on the multiplicative noise intensity: it becom
without the break inherent in a phase transition induced
only multiplicative noise. If we increase the additive noi
intensity, the transition becomes less detectable~Fig. 1,
curve 3!.

In a numerical experiment it is more convenient to calc
late the variance of the corresponding variable instead of
mean amplitude squared. It is evident that the dependen
of these values on the noise intensity should be similar.
deed, in the case when the amplitudeA is a slowly changing
function, the variance is equal tôA2&/2. The dependencie
of a^A2& on h found by numerical simulation of Eq.~1! for
both the presence of additive noise and its absence are sh
also in Fig. 1. We find that near the threshold the simulati
match the analytical results very well and that the depend
cies for q50 can be approximated by a straight line inte
secting the abscissa ath50. With an increase ofh, the
growth rate of the variance in numerical simulations
smaller than in the analytical results. This can be explai
by the fact that the Krylov-Bogolyubov method is valid on
near a threshold.

III. PHASE TRANSITIONS INDUCED
BY ADDITIVE NOISE

A. Oscillator with quadratic nonlinearity

In this section we show that the mechanism of the no
induced phase transition may exist also in an oscillatory s
l
e

l

a
li-
s
y

-
e

ies
-

wn
s
n-

d

-
s-

tem with additive noise only. For this we consider an osc
lator with a quadratic nonlinearity and additive rando
force.

The oscillator under consideration can be described b

ẍ12b ẋ1v0
2~11x1gx2!x5v0

2bj~ t !, ~21!

where the friction factorb is assumed to be sufficiently sma
in comparison with the natural frequencyv0 , j(t) is an
external force, which is a sufficiently broadband random p
cess with zero mean value, the parameterb is responsible for
the noise intensity, and the termgx3 is introduced to avoid
the solution going to infinity@caused by the presence of a
unstable singular point of Eq.~21! for g,0.25#.

At this point it is necessary to note that direct use of t
Fokker-Planck equation@26# and its stationary solution doe
not show that the system probability distribution for va
ables (x,ẋ) is qualitatively changed with increase of th
noise intensity. However, as we learned from the exampl
the previous section, the transition can take place despite
facts that there is no noise-induced maximum in the sys
probability distribution~see Fig. 2! and that the transition is
not observable in the dependence of variance on noise in
sity ~see Fig. 1, curve 3!. Obviously, the presence of mode
ately strong additive noise makes every transition hidden
undetectable. Nevertheless, the mechanism of the no
induced transition is present in the model and, therefore,
call this phenomenon ahidden phase transition induced b
additive noise.

To demonstrate the physical mechanism that is resp
sible for the hidden noise-induced phase transition, we w
use the same procedure as for the calculation of subharm
resonances@14#. First, we decomposex into

x~ t !5y~ t !1x~ t !, ~22!

wherex(t) is a random process satisfying the equation
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FIG. 2. The system probability distribution
for a pendulum.~a! The case without additive
noise. The probability distributionw̃(aA2)
5w(A)/2aA for h50.01 ~curve 1! and h50.2
~curve 2!. ~b! The case with additive noise. Th
dependence of w̃(aA2)5w(A)/2aA for q
50.01/(11h) and h520.2, 0, and 0.2 for
curves 1–3, respectively.
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ẍ12bẋ1v0
2x5v0

2bj~ t !. ~23!

Now we will show that the system described by the va
abley undergoes a noise-induced transition. Substituting
~22! into Eq. ~21! and taking into account Eq.~23!, we get
the equation for the variabley,

ÿ12b ẏ1v0
2$11y1j2~ t !1gy@y13x~ t !#%y5v0

2j1~ t !,

~24!

where j1(t)52x2(t)@11gx(t)# is additive noise and
j2(t)5x(t)@213gx(t)# is multiplicative noise. Comparing
Eq. ~24! with Eq. ~1!, we find that these equations are sim
lar. In the absence of additive noisej1(t), Eq. ~24! is similar
also to Eq.~1! in @1#, except that the role of the random
processj(t) is played by the noisej2(t). In the previous
section we have shown analytically and numerically that
the oscillator described by such an equation multiplicat
noise causes a phase transition. Hence, the noisej2(t) is
responsible for the phase transition, whereas, as will be s
from subsequent results, the additive noise makes the tra
tion hidden.

An approximate analytical analysis of Eq.~24!, in view of
Eq. ~23!, is possible in the specific case when the rand
force in Eq.~23! is nonresonant. Owing to this,x(t) is suf-
ficiently small, and we can ignore in Eq.~24! bothj1(t) and
3gx2y. As a result we obtain the following approxima
equation fory:

ÿ12b ẏ1v0
2@11y12x1gy~y13x!#y50. ~25!

Putting y5A(t)cosc(t)1¯ , wherec(t)5v0t1f(t), and
using now the Krylov-Bogolyubov method for stochas
equations, we obtain the following truncated equations
A(t) andf(t):

Ȧ5~h2aA2!A1v0z1~ t !, ḟ5M11v0z2~ t !, ~26!
-
q.

n
e

en
si-

r

where

h5
3v0

2K1

2b
21, a5

3g

4 S 12
15gv0

2

8b D ~K21K3!,

M15E
2`

0

^x~ t !x~ t1t!&S sin 2v0t1
9g2A3

4

3~3 sinv0t1sin 3v0t! Ddt,

z1(t) andz2(t) are white noises with intensities

N15S K11
9g2A2

16
~K21K3! DA2

and

N252K01K11
9g2A2

16
~K21K3!,

respectively, K15kx(2v0)/2, K25kx(v0)/2, K3
5kx(3v0)/2, K05kx(0)/2, andkx(v) is the spectral den-
sity of the random processx(t) at the frequencyv.

Solving the Fokker-Planck equation associated with E
~26!, we get the probability densityw(A):

w~A!5CA~2h21!/~11h!~11rA2!2@~215h!r 13a#/2r ~11h!,

~27!

where

r 5
9g2

16

K21K3

K1
.

From the normalization condition we find
C523H a1rh

a
r 3h/2~11h!

G„3~a1rh!/2r ~11h!…

G„3h/2~11h!…G„3a/2r ~11h!…
for h>0

0 for h<0.

~28!



-

o

ed
ra

te
d
n

io

e
th
is

-

ter,

re,
he

der
ell.

lly

n

ase

f
al
oise
As

ncy
r

is

ced
c-

e of

te

ical
de
pass

4814 PRE 61P. S. LANDA, A. A. ZAIKIN, V. G. USHAKOV, AND J. KURTHS
It follows from here that the probability density of the am
plitude turns out to be ad function for h<0, as for the
pendulum considered in@1#.

Using Eqs.~27! and ~28! we calculatê A2& ~^•& denotes
the statistical average!:

^A2&5H 3h

3a1r ~215h!
5

4h

3g24r
for h>0

0 for h<0.

~29!

Note that the solution found is valid only for 3g(K21K3)
,4K1 .

Thus, we have shown analytically that in the absence
the additive noisej1 and the term 3gx2y, in a system de-
scribed by Eq.~24!, a noise-induced phase transition inde
occurs. As shown below, numerical simulations demonst
that this transition remains well defined if the term 3gx2y is
included; though the additive noisej1 makes it hidden. The
main results of our numerical simulations are as follows.

~1! The results of numerical simulation of the comple
equations~23! and~24! in the case of sufficiently broadban
noise, which can be considered as white noise, are show
Fig. 3. For comparison, the results of numerical simulat
of Eq. ~24! after dropping only the additive noisej1(t) are
also given there. We call Eq.~24! with j1(t)[0 the ‘‘re-
duced equation’’ and denote its solution byyr . The solution
of Eq. ~25! is denoted byyrr . We see that for the complet
equations, which are equivalent to the initial equation,
phase transition is practically undetectable and very no
~curve 1!. For the reduced equation, the phase transition
clearly defined~curve 2!. Close to the critical point the de

FIG. 3. Dependencies of the first moments of the simula
solutions onb2 for g50.251, v051, b50.1. ~a! variancessy

2

~curve 1!, syr

2 ~curve 2!, sx
2 ~curve 3!, andsyrr

2 ~curve 4!; ~b! mean
value^y& ~curve 1!, ^yr& ~curve 2!, and^yrr & ~curve 3! for the same
value ofg.
f

te

in
n

e
y

is

pendence ofsyr

2 , which can be treated as an order parame

on the parameterb2, which can be regarded as temperatu
is well approximated by the straight line described by t
equationsyr

2 50.056(b22bcr
2 ), wherebcr'4.1. This means

that the critical index is equal to 1@see Fig. 3~a!#.
~2! Figure 3~b! demonstrates that we can use as an or

parameter not only the variance, but the mean value as w
Close to the critical point the dependence of^yr& on b2 can
be approximated by the straight linêyr&520.025(b2

2bcr
2 ).

~3! To reveal the influence of the term 3gx2y that was
dropped in the analytical consideration, we also numerica
simulated Eq.~25!. The results are given in Fig. 3~a! ~curve
4! and Fig. 3~b! ~curve 3!. We see that the phase transitio
occurs for a smaller value ofb2 if in the reduced equation the
term 3gx2y is ignored, i.e., this term suppresses the ph
transition@compare curves 2 and 4 in Fig. 3~a!#. This is also
attested by the fact that the slopes of the dependencies os r

2

ands rr
2 on b2 are essentially different. Thus, the numeric

simulations have shown that in the absence of additive n
j1 only, we obtain a clearly defined phase transition.
mentioned above, the additive noisej1 makes the transition
hidden~see the dependence forsy

2!. It is interesting that the
dependence forsx

2 is close to that forsy
2; the difference

appears only for large values of the parameterb. This means
that close to the critical point the influence of the noisex(t)
is negligibly small.

~4! To reduce the noise spectral density at the freque
v0 , we have passed the noisej(t) through a bandpass filte
with central frequency 2v0 and bandwidthv0 . The spectral
density of this noise is shown in Fig. 4. We see that it
indeed very narrowband in the vicinity ofv0 . Next, we
simulate Eqs.~23! and ~24! using this filtered noise asj(t).
For comparison we simultaneously simulate the redu
equation~24!. Figure 5 illustrates that, even though the spe
tral density of the filtered noisej(t) at v0 is very small, the
influence of the noisej1(t) and of the term 3gx2y is essen-
tial. The reason is that the component of the noisex(t) at v0
is not small because it is resonant. The smooth increas

d

FIG. 4. The spectral density of the noise used in numer
simulations for the oscillator with quadratic nonlinearity to exclu
the resonant frequency. The noise is passed through a band
filter.
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syr

2 with increasingb2 from bcr
2 onward is explained by the

fact that the influence of the term 3gx2y is less than for
broadband noise.

Coming back to the initial equation~22!, we decomposed
the initial variablex into the sum of variablesy and noisex,
which has practically no influence, since the dependen
for x and y are very similar~Figs. 3 and 5!. Dropping the
additive constituent of the noise from the equation fory, we
get a clearly defined transition with an increase of noise
tensity. From this we conclude that the initial equation d
scribes a system in which a hidden nonequilibrium ph
transition is induced by additive noise.

The transition under consideration is similar to the tran
tion studied in the previous section, not only in the physi
mechanism~autoparametrical and parametrical excitation,
spectively!, but also in the sense that both these transiti
occur via on-off intermittency@27,28#. This is clearly visible
from the shape ofyr(t) @Fig. 6~b!#. Because of additive nois
the intermittency forx(t) is hidden @Fig. 6~a!#. As for a
pendulum with randomly vibrated suspension axis and a
tive noise@28#, the intermittency is defined more clearly fo
b,bcr @Fig. 6~a!#.

At the current stage of investigation we have shown t
an oscillator with quadratic nonlinearity may contain
mechanism for a phase transition induced only by addi
noise. The strong influence of additive noise makes this tr
sition undetectable in the initial equation, but we guess th
is possible to find a situation when the transition becom

FIG. 5. Dependencies of the first moments of the simula
solutions onb2 obtained using bandpass filtered noise.~a! Vari-
ancessy

2 ~curve 1!, syr

2 ~curve 2!, andsx
2 ~curve 3!; ~b! mean values

^y& ~curve 1! and ^yr& ~curve 2!.
es

-
-
e

i-
l
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well defined just by dropping some terms from the init
system equation. We leave this as an open question in
present paper.

B. Electromechanical vibrator

An electromechanical vibrator energized from a source
periodic alternating current has been considered in@21,14#. It
consists of a sprung plate attracted to an electromagnet
a power supply circuit forming an oscillatory circuit. W
demonstrated that under certain conditions powerful lo
frequency oscillations of the plate can be excited@21,14#.
Below we show that similar oscillations can also be exci
in the case when the power source is random. The schem
the vibrator with a random power source is presented in F
7.

The equations of this vibrator can be written as

d2

dt2 S L~x!I

L0
D12d1

dI

dt
1V0

2I 5j~ t !,

d2x

dt2
12d2

dx

dt
1n0

2x5F~x,I !, ~30!

where x is the plate displacement,I is the current in the
oscillatory circuit, L(x)5L0(11a1x1a2x21a3x31¯) is
the inductance of the coil with a core depending on the s
of the clearance between the plate and the core,d15R/2L0
and d25a/2m are the damping factors for the oscillato
circuit and the plate, respectively,V051/AL0C0 and n0

5Ak/m are the corresponding natural frequencies,F(x,I )
5(I 2/2)(dL/dx) is the pondermotive force acting on th
plate, andj(t) is a random process that is proportional t
electromotive force of the power source. We setj(t) to be
described by the following equation:

FIG. 6. A phase transition via on-off intermittency. The tim
series ofx(t) ~a! and ~c!, andyr(t) ~b! for b2520 ~a! and ~b! and
b254 ~c!. The remaining parameters are the same as in Fig. 4

d
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j̈10.5vj̇11.125v2j5kx~ t !, ~31!

wherex(t) is white noise. It follows from Eq.~31!, that the
spectral density ofj(t) peaks at the frequencyv.

Numerical simulation of Eqs.~30! shows that from a cer
tain value of the power source intensity, low-frequency
cillations of the plate appear. The dependence of the varia
of these oscillations (sx

2) on k2, which is proportional to the
noise intensity, is illustrated in Fig. 8~a!. The form of this
dependence closely resembles the corresponding depend
for a pendulum with a randomly vibrated suspension a
and additive noise~see Fig. 1!. We find from this plot that,
for sufficiently large values ofk2, the dependence can b
approximated by a straight line described by the equa
sx

250.3(k220.025). Taking into account the similarity wit
the dependencies for noise-induced transitions in a pen
lum, we can take the point where this straight line crosses
abscissa as the threshold of a noise-induced transi
Hence, the critical value ofk is equal to 0.158. Unlike the
variancesx

2, the variance of the current fluctuations (s I
2

5I 2) increases with an approximately constant rate ask2

increases. The corresponding dependence is presented in
8~b! ~curve 1!. It can be approximated by the straight lin
s I

250.075k2. Owing to the presence of a quadratic nonli
earity, the mean value of the plate displacement is nonz
The dependence ofx̄ on k2 is also shown in Fig. 8~b! ~curve
2!.

Typically for noise-induced transitions that lead to t
excitation of oscillations@28#, for k,kcr one can detect on
off intermittencylike behavior in oscillations of the variablex
@see, for example, Fig. 9~a!#. With increase ofk this effect
disappears. An example of the oscillations ofx, I, andj for
k.kcr is given in Fig. 9~b!.

Power spectra of the random source and excited osc
tions are shown in Fig. 10. It is clearly seen that we deal w
high-frequency excitation. The mechanism responsible
the excitation seems to be similar to combination resona

As in the case of a pendulum with slight additive nois
noise-induced oscillations of the vibrator under considera

FIG. 7. A schematic image of an electromechanical vibra
with random power source.x is the plate displacement,a the fric-
tion, L the inductance,I the current,R the resistance,j(t) the ran-
dom process responsible for the electromotive force of the po
source, andk the rigidity of the springs.
-
ce

nce
s
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Fig.
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can be partially suppressed by additional harmonic ac
@27#. But, in contrast to the pendulum, the suppression
curs at low-frequency action rather than at high frequency
the action frequency is high, the action has little or no eff
on the variance of the plate oscillations. To describe the
ditional action, we add the terma cosvt to j(t) on the right
of the first equation of Eq.~30!. Under low-frequency action
a considerable constant displacement of the plate appe
Therefore, the study of the suppression is conveniently p
formed using the variance of the plate velocity instead of
plate displacement. The dependencies of this variance (sy

2)
on the action amplitudea for a fixed value of the action
frequencyv and onv for a fixed value ofa are shown in Fig.
11. We see that for a fixed value of the frequencyv
50.2) the variancesy

2 initially decreases as the action am
plitude increases, and then abruptly increases owing to e
tation of oscillations at the frequencyv. For a fixed value of
the action amplitude, the dependence ofsy

2 on v has a mini-
mum whose location depends on the amplitudea @Fig.
11~b!#.

IV. TRANSITIONS INDUCED BY BOTH
MULTIPLICATIVE AND ADDITIVE NOISE:

STABILIZATION OF NOISE-INDUCED OSCILLATIONS
BY ADDITIVE NOISE

In this section we consider an example of a system un
the combined action of additive and multiplicative nois
Both multiplicative and additive noise can induce a tran
tion, and, what is especially interesting, a combination
their actions stabilizes noise-induced oscillations. To dem

FIG. 8. The noise-induced transition in the electromechan
vibrator caused by a mechanism similar to combination resona
The dependencies ofsx

2 ~a! and 10s I
2 and x̄ ~b! on k2 for v51,

V050.9, n050.05, d150.1, d250.005, L0 /m50.1, a151, a25
20.5, anda350.1.

r

er
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FIG. 9. On-off intermittency in the vibrator. Examples of oscillations of the plate (x), of the current in the oscillatory circuit (I ), and of
the power source~j! for k50.08 ~a! andk50.3 ~b!.
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strate these effects, we use a standard epidemiological m
for the description of seasonal oscillations of childhood
fections, such as chickenpox, measles, mumps, and rub
under the influence of variations of the contact rate of c
dren susceptible to infection with infective children. Th
model has been studied in detail both in the case of perio
variation of the contact rate@22–24,29# and in the case o
random variation of the contact rate@15,29#. Here we dwell
only on one important aspect of this problem, namely, on
stabilizing influence of a combination of additive and mul
plicative noise on the excitation of induced oscillations.

The model equations are

Ṡ5m~12S!2bSI, Ė5bSI2~m1a!E,

İ 5aE2~m1g!I , ~32!

Ṙ5gI2mR, ~33!

where S is the relative number of children susceptible
infection, E is the relative number of children exposed b
not yet infective,I is the number of infective children,R is
the number of children recovered and immune, 1/m is the
average expectancy time, 1/a is the average latency period
1/g is the average infection period, andb is the contact rate
~the average number of susceptibles in contact yearly w
del
-
lla,
-

ic

e

t

th

infectives!. Let us note that Eqs.~32! do not contain the
variableR; hence these equations can be considered inde
dently of Eq.~33!.

It is easy to show that Eqs.~32! for b5b05const, and for
any values of the remaining parameters, have one aper
cally unstable singular point with coordinatesS51,E5I
50, and one stable singular point with coordinates

S05
~m1a!~m1g!

ab0
, E05

m

m1a
2

m~m1g!

ab0
,

I 05
am

~m1a!~m1g!
2

m

b0
. ~34!

If the parameterb varies with time then the variablesS, E,
and I will oscillate, and these oscillations will be execute
around the stable singular point with coordinates~34!. There-
fore, it is convenient to substitute into Eqs.~32! the new
variablesx5S/S021, y5E/E021, andz5I /I 021. Putting
b5b0@11b1f (t)#, where f (t) is a function describing the
shape of the contact rate variation, we rewrite Eqs.~32! in
the variablesx, y, z:

ẋ1mx52b0I 0@11b1f ~ t !#~x1z1xz!2b0b1I 0f ~ t !,
m
FIG. 10. The power spectra of the rando
power source~a! and of the solutionx ~b!.
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ẏ1~m1a!y5~m1a!@11b1f ~ t !#~x1z1xz!

1~m1a!b1f ~ t !, ~35!

ż1~m1g!z5~m1g!y.

In Eqs.~35! the termb1f (t) can be considered as an extern
action upon the system. This form of the equations clea
shows that this action is not only multiplicative, i.e., par
metric, but additive as well.

Olsen and Schaffer@23# set the following values of the
parameters: m50.02 year21, a535.84 year21, g
5100 year21, b051800 year21, andb150.28. These param
eters correspond to estimates made for childhood diseas
first world countries. We follow them.

In @15# we supposed that the contact rateb varies ran-
domly with the main period equal to one year, i.e.,f (t)
5x(t), wherex(t) is a random process that is a solution
the equation

ẍ12pẋ16p2x5kj~ t !, ~36!

j(t) is white noise, andk is a factor that we choose so th
the variance ofx(t) is equal to 1/2. It is easily seen that th
spectral density ofx(t) peaks at the frequencyv52p.

Noise-induced oscillations appear as a result of a no
induced phase transition. To show this let us consider
12, where the dependence ofsx

2 on b1 is presented. With an
increase of noise intensity, the intensity of noise-induced
cillations is increased too. For rather largeb1.bcr this de-
pendence can be approximated by a straight line. The in
section point of this line and the abscissa can be taken
point of a transition—a threshold valuebcr . To prove it let
us drop the artificially multiplicative noise from Eqs.~35!. In

FIG. 11. The dependencies of the variancesy
2 on the action

amplitudea for v50.2 ~a! and on the action frequencyv for a
50.3 ~b!. For v50.2, a.0.4, the variance abruptly increases o
ing to excitation of oscillations at the frequencyv and goes, in fact,
to infinity.
l
ly
-

in

e-
g.

s-

r-
a

this case the variance of oscillations is equal to zero forb1
,bcr and goes to infinity shortly after the noise intens
represented by the parameterb1 exceeds its critical value
The same situation is observed if additive noise is absent
multiplicative noise is present. Now it is clear that the po
b15bcr is a point of noise-induced phase transition, whi
can be induced by both multiplicative and additive nois
The physical mechanisms responsible for this effect
likely to be the same as for the pendulum~Sec. II! and the
nonlinear oscillator~Sec. III A!, respectively.

It is even more interesting that the combined action
additive and multiplicative noise performs a stabilization
noise-induced oscillations: in this case the dependence
variance on noise intensity does not go to infinity. Again,
for previously considered models@28#, the transition can be
accompanied by the effect of on-off intermittency. In th
absence of additive noise one can observe on-off interm
tency near the threshold~Fig. 13!.

V. CONCLUSIONS

We have studied in this paper the role of additive noise
noise-induced phase transitions and have shown that it
be nontrivial. We have found several phenomena by con
eration of different typical models; each of them has dem
strated a certain aspect of the problem. Consideration
pendulum under the action of multiplicative and additi
noise has shown that, if a noise-induced transition occur

FIG. 12. A noise-induced phase transition in the SEIR mod
The dependence ofs2 on the parameterb1 in the case of a random
variation of the contact rate. The solid line representss2

50.47(b120.066).

FIG. 13. On-off intermittency in the SEIR model. An examp
of oscillations of the variablesx andy for b150.099 for the case of
multiplicative random action alone.
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the presence of additive noise, it is blurred by this noise
becomes hidden. We have presented results of an analy
study confirmed by numerical simulations. By the examp
of Sec. III we have demonstrated that there are mechan
which allow additive noise alone to induce a hidden tran
tion. Consideration of an epidemiological model has sho
that, moreover, there exist nonlinear systems in which o
the combined action of multiplicative and additive noi
causes stable noise-induced oscillations. In such system
joint influence of additive and multiplicative noise can
interpreted as the stabilization of noise-induced oscillatio
In the present study we have considered only transitions
lead to the excitation of oscillations~e.g., in contrast to
@20,30,31#!. It should be mentioned also that we have
cently shown in@19,20# that the role of additive noise ma
also be crucial in noise-induced transitions that lead to
creation of a mean field in a spatially extended system.
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APPENDIX A: LANGEVIN EQUATIONS

The following Langevin equations can be related to
Fokker-Planck equation~5! in view of Eqs.~10! and ~11!:

Ȧ5bS h2
3v0

2

4
aA2DA1

v0
2

2A
K121

v0

2
Az11~ t !1v0z12~ t !,

ḟ5v0
2M1v0S z21~ t !1

z22~ t !

A D , ~A1!

wherez11(t), z12(t), z21(t), andz22(t) are white noises with
zero mean value and uncorrelated withA. The intensities of
these noises areK11, K12, K21, andK22, respectively. We
note that even in the case withkj2

50 Eqs.~37! differ from

that derived in@26#. The reason is that there the variableu
5 ln A in place ofA was used, i.e., the correlation betwe
the noisej(t) and the amplitudeA was implicitly ignored
@14,1,25#.

APPENDIX B: CALCULATIONS IN THE CASE
WITH ADDITIVE NOISE

The dependence of the mean amplitude squared on
multiplicative noise intensity in the case where additi
noise also acts on the pendulum can be calculated as foll
Upon integrating Eq.~19! overf and calculating the integra
within the exponential, we obtain

w~A!52pAw~A,f!5CA2~A21q/a!3~q21!/2~11h!

3expS 2
3aA2

2~11h! D . ~B1!

It follows from the normalization condition that

C215E
0

`

A2~A21q/a!3~q21!/2~11h! expS 2
3aA2

2~11h! DdA.

~B2!
d
cal
s

s
i-
n
ly

the

s.
at

-

e

.

e

he

s.

The integral on the right-hand side of Eq.~B2! can be ex-
pressed in terms of a Whittaker function@32#. As a result we
find

C215
Ap

4a2mq1/22m S 3

2~11h! D
2m21/2

expS 3q

4~11h! D
3Wm21,mS 3q

2~11h! D , ~B3!

wherem53(h1q)/4(11h).
We obtain the expression forC in explicit form in the

limiting case when the additive noise intensity is small co
pared to that of the multiplicative noise, so that

q!1. ~B4!

In this case we can use a representation of the Whitta
function Wl,m(z) in terms of two other Whittaker function
Ml,m(z) andMl,2m(z) @32#:

Wl,m~z!5
G~22m!

G~1/22m2l!
Ml,m~z!

1
G~2m!

G~1/21m2l!
Ml,2m~z!. ~B5!

We then expand each of the functionsMl,m(z) and
Ml,2m(z) in powers ofz @32#:

Wl,m~z!5Az expS 2
z

2D F G~22m!

G~1/22m2l!
zm

3S 11
122~l2m!

2~112m!
z1¯ D

1
G~2m!

G~1/21m2l!
z2mS 11

122~l1m!

2~122m!
z1¯ D G .

~B6!

Substituting Eq.~B6! into Eq. ~B3! we get

C215
Ap

4a2m F G~22m!

G~3/222m!
q2mS 11

9q

4~112m!~11h!
1¯ D

1
G~2m!

G~3/2! S 2~11h!

3 D 2m

3S 11
3~324m!q

4~122m!~11h!
1¯ D G . ~B7!

The expression~14!, obtained in the absence of additiv
noise, follows at once from Eq.~B7! for q→0.

The probability distribution~B1! for qÞ0 differs essen-
tially from Eq. ~15!: first, it is not ad function forh,0 and,
secondly,w(A)50 for A50.

Using Eqs.~B1! and~B3! we can calculatêA& and^A2&.
For example, for̂ A2& we obtain

a^A2&5A3q~11h!

2

Wm23/2,m11/2@3q/2~11h!#

Wm21,m@3q/2~11h!#
.

~B8!
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Taking into account the recursion relation@32#

Wl,m~z!5AzWl21/2,m11/2~z!1~ 1
2 2l2m!Wl21,m~z!,

the expression~B8! can be rewritten as

a^A2&5~11h!S 12~ 3
2 22m!

Wm22,m@3q/2~11h!#

Wm21,m@3q/2~11h!# D .

~B9!

The expression for̂ A2& can be obtained in explicit form
only with the constraint~B4!. Using Eq. ~B6! we find
for Wm22,m(z)/Wm21,m(z) the following approximate
expression:
v.

. d

o,

ys

al

ce
pt
e
by
um
s
n

Wm22,m~z!

Wm21,m~z!
'

2

~324m!
FAp

2
G~22m!zm~122m!

3@2~112m!15z#1G~2m!G~ 3
2 22m!

3S 12
4m

3 D z2m~112m!@2~122m!

1~524m!z#G SAp

2
G~22m!zm~122m!@2~1

12m!13z#1G~2m!G~ 3
2 22m!z2m

3~112m!@2~122m!1~324m!z# D 21

.

~B10!

Substituting Eq.~B10! in Eq. ~B9! we get the required
Eq. ~20!.
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