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Influence of additive noise on transitions in nonlinear systems
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The effect of additive noise on transitions in nonlinear systems far from equilibrium is studied. It is shown
that additive noise in itself can induce a hidden phase transition, which is similar to the transition induced by
multiplicative noise in a nonlinear oscillatpP. Landa and A. Zaikin, Phys. Rev.®#, 3535(1996)]. Inves-
tigation of different nonlinear models that demonstrate phase transitions induced by multiplicative noise shows
that the influence of additive noise upon such phase transitions can be crucial: additive noise can either blur
such a transition or stabilize noise-induced oscillations.

PACS numbsd(s): 05.40—a, 05.70.Fh

[. INTRODUCTION induced in the high-frequency subsystem. Then we consider
a standard epidemiological modg2—-24 with a random

Noise-induced transitions occupy an important placeaction and show that this action can be split into additive and
among phenomena that demonstrate a strong influence 8iultiplicative parts. In contrast to the pendulum, here the
weak noise on the behavior of a systg®; e.g.,stochastic ~ transition can be induced by both additive and multiplicative
resonance[3_5], noise-induced transpor[G], coherence noise. The mechanisms are I|ke|y to be the same as in the
resonancd 7] or noise-induced pattern formatidig]. Inten-  oscillator with quadratic nonlinearity and in the pendulum,
sive investigations of recent years have shown that noisg€spectively. The combined action of additive and multipli-
induced phase transitions can manifest themselves in the apative noise in this system extends the range of the param-
pearance of new extrema in the system probabilityeters where noise-induced oscillations are stable, so we in-
distribution[9,10], in the creation of a mean fief[d1-13, terpret this phenomenon as stabilization of noise-induced
and in the excitation of oscillationd,14,15. The last two  Oscillations by additive noise.
types of transitiong16] have been termed nonequilibrium  The organization of the paper is as follows. In Sec. Il we
noise-induced phase transitiofts7, 1. consider a pendulum with multiplicative and additive noise,

In these and other works multiplicative noise is perceivedvhich demonstrates a phase transition induced by multipli-
to be responsible for the transitions. However, as has beefative and influenced by additive noise. In Sec. Ill systems
recenﬂy Shown ”ﬁl8_2q7 additive noise p|ays a Crucia' r0|e with additive noise alone are considered: an oscillator with
in these transitions. Hence, studying the influence of additivéluadratic nonlinearity and an electromechanical vibrator.
noise is of great importance. In this paper we study severapection IV is devoted to the study of transitions induced by
major aspects of the influence of additive noise by Considerboth additive and mUltiplicative noise and of the StabIIIZIng
ation of typical models in which a transition leads to noise-influence of additive noise in an epidemiological model. In
induced oscillations. Sec. V we summarize the results obtained.

First, we study a transition induced by multiplicative
noise in the presence of additive noise. We investigate such a
transition theoretically and numerically in a pendulum with
randomly vibrating suspension axis. In this model the addi-
tive noise blurs the transition induced by multiplicative  First, we study the problem of excitation of a nonlinear
noise. The pendulum is a key model for understanding anoscillator under parametric and forcing random actions. We
other effect: a hidden phase transition induced purely by adgive an approximate analytical solution of this problem to
ditive noise. We demonstrate it for an oscillator with qua-reveal the influence of additive noise on a phase transition
dratic nonlinearity and random force by showing thatinduced by multiplicative noise in a pendulum with a ran-
autoparametrical excitation occurs due to the additive noisgomly vibrated suspension axis. In the absence of additive
and quadratic nonlinearity. At the same time the presence gfoise such a transition has been considered1i25]. It
additive noise makes this transition hidden. The mechanisnghould be noted that the additive constituent of noise appears
of this transition is similar to subharmonic resonafitd]. by itself if the vibration of the pendulum’s suspension axis
Another mechanism, combination resonance, can also be agccurs in a certain direction making a nonzero angle with the
sociated with a phase transition induced by additive noiseyvertical [18].

This mechanism is illustrated by an electromechanical vibra- |n the presence of additive noise the equation of motion
tor energized from a source of sufficiently high-frequencyfor this system can be written as

random current in place of a periodic soul&i,14]. The

combination resonance is caused by nonlinear interaction of o ) ) )

random oscillations of the source current and the oscillations ¢+ 2B8(1+ a@?) e+ wg[ 1+ &1(t)]sine=wpéa(t), (1)

II. NOISE-INDUCED PHASE TRANSITIONS
IN THE PRESENCE OF ADDITIVE NOISE
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where is the pendulum’s angular deviation from the equi- 1.2 - . : . » -
librium position, wq is the natural frequency of a small free
pendulum’s oscillationsg is the damping factorg is the
coefficient of nonlinear friction, and;(t) and &,(t) are
comparatively broadband random processes with zero mean
values. We assume that the suspension axis vibration is mod-
erately small in amplitude, i.e., the pendulum oscillations can A
be considered small enough ferto be substituted in place § 0.
of sin ¢ in Eq. (1). o
An approximate analytical solution of this problem can be 0.
obtained from the assumptions th8fwy~e, &(t)~ e,
and &,(t)~ e, wheree is a certain small parameter which
should be put equal to unity in the final results. Equatibn
can then be solved by the Krylov-Bogolyubov method; to do
this we set o=A(t)cosy(t)+eu;+---, where (t)=wqt
+ (1),

) ) FIG. 1. The influence of additive noise on a noise-induced phase
A=efi+--, dp=€Fi+---, (2 transition in a pendulum with randomly vibrated suspension axis.
The dependence of the valeéA?), which is proportional to the
anduy,...f1,...,Fq,... areunknown functions. By using the Mean amplitude squared, opwithout additive noiseq,=0 and
Krylov-Bogolyuov technique for stochastic equatiofsee with additive noisegy=0.005 and 0.02 for curves 1-3 respectively.

[26]), we find expressions for the unknown functidhsand Theoretical (solid lineg and numerical resultgsymbols. In the
: _— : : . presence of additive noise the dependence is smooth. The remaining
F,. Substituting these expressions into E@.we obtain parameters arg=0.1, a— 100, andwo= 1.

A— 3 272
A== B(1+ zawA%)A+ g1 (A, o(t),£1(1), £2(1)), . R = fox(<&gl(§;\¢’t)gl(A,¢>,t+T)>
. (?gl(Avd)vt)
b= woGa(A Y(1), £1(1), E5(1)), @ T GAGLrD) ) ]dn (6
where A )
0 J ,o,t
= fx(<%glm,¢,t+r>>
A
91(A,¢,t) = 551(05"1 2¢(t) — E(t)siny(t), 90,(A b
+<Tg2(A,¢,t+T)> dr, ™
U2(A, p,t) = & (t)cos y(t) — A E2(Dcosy(t). ggseﬂaglar brackets denoting averaging over the statistical
The bar over an expression denotes averaging over time. K=k, (2wg), Ki=1 , 38
As follows from[26], the Fokker-Planck equation associ- 1= 2K (200) 12= 2K, o) ®
ated with Eqs(3) and(4) is
K21=%[K§1(0)+%K§1(2w0)],
IW(A, d,t) 9 ) )
T Al AT RawcADAT 6ok, Koz= 3k (0)+ g (wo)], ©)
WA, p,t)  wh
XW(A,QS,t)}—w%RzT-F % and
& [[Ky -
S TA2+ Ko W(A, 1) Kg(w):‘[7 (§(1)é(t+7))coswrdr

+| Kyt (5) is the power spectrum density of the procegs) at the
frequencyw.
Let us now calculate the integral) and(7), taking into

where account the expressions fgf andg,. As a result, we obtain

KZZ) aZW(A! ¢,t)
W st |
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3A (0 increasing noise intensity. The Langevin equations which
RF@[ (é1(t)&,(t+ 7))cos 2wgrdT can be related to the Fokker-Planck equatiBnin view of
o Egs.(10) and(11) are presented in Appendix A.

1 (o First we considethe case when additive noise is absent
+ ﬁj (&x(1)&x(t+ 7))cosword T i.e., kg, =0. In this case the steady-state solution of {9,
satisfying the condition of zero probability flux, is
3Ky Ky
8 T2 (10 g C 3 (A
w( ,¢)—mexm7]n it (12

1 (o
RZ:ZJ (&1(1)&1(t+ 7))sin 2wrd T where a=3aw3/4 is the nonlinear parameter ang
*°° =3w§K11/8,8—1. The constanC is determined from the
normalization condition

1 (o

—EJx(fz(t)gz(t-i-r))sinwofdr. (11) o

f fw(A,¢)AdAd¢=1.
0 0

The value ofR, depends on the characteristics of the random
processes;(t) and &,(t): if they are white noises theR,
=0; but if, for example£,(t) is white noise and(t) has a
finite correlation time and its power spectrum density is

Upon integrating Eq(12) over ¢, we find the expression for
the probability densityv of the oscillation amplitude:

3aA?
aixgl(zwo) W(A)=CAR7~D/(1+n) exp(— 21t (13
ke (@)= (0—20y2+a2’ (1+7
w—2wg)°taj o -
From the normalization condition we get
then
3a 37/2(1+7) 1 f 0
N e — —
Ryo L0k (200) c=2x{ |21+ 7) r@mzity) 7
4(16wpt+ag) 0 for 5=<0.
14
It should be noted that in this cas$® is negative, which 4
results in a decrease of the mean oscillation frequency witlHence,
|
3a 39/2(1+7) A(Zr]—l)/(l+ 7) [{ 3aA2
P exp — for =0
w(a)=2x1{ |2(1+7) T @7/2(1+ 7)) 2(1+7) 7 (15

S(A) for »=<0.

The fact that forp<0 the probability density of the ampli- multiplicative noise. This manifests itself in the fact that the
tude turns out to be & function is associated with the ab- mean values of the amplitude and of the amplitude squared

sence of additive noisesee below. become nonzer(Fig. 1, curve 1 This parametric excitation
Using Eq.(15), we can determinéA) and(A2): implies a transition of the system to a new state, which can
be treated as a phase transition. The conditjgnO is the
threshold for the onset of this phase transition. It follows
|3 Tyt 21+ y) » for y=0  that,in the absence of additive noise, the critical value of the
(A)= 2a(1+n) I'Gn/2(1+75)+1) multiplicative noise intensity is
0 for =<0,
16
(16 ) 168
Kg (sz)EKcrzg_w(z)- (18
5 7 for »=0
(A9=q 2 (17 Hence, the parametey characterizes the extent to which the
0 for »=<0. intensity of the multiplicative noise component exceeds its
critical value.
Therefore, it is evident that fo,>0 the parametric excita- It should be noted that, for;>0, the steady statA=0

tion of pendulum oscillations occurs under the influence ofloses its stability and the stafe#0 becomes stable. At the
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same time, Eq(15) implies that the probability density @ conveniently written as
is monotonically decreasing with increasiAg for any value

2 2
of »>0. Hence, in contrast to the transitions considered in (A, ¢)= - e F{ 3(n—aA )SA 9 ,
[9], the appearance of a new stable state need not be accom- 2m(aA™+q) (1+n)(aA”+q)A
panied by the appearance of a new maximum in the system (19
probability distribution[see Fig. 22)]. whereq=4aK,,/K; characterizes the ratio between the in-

Now let us considethe case when the intensity of addi- tensities of additive and multiplicative noise.

tive noise is not equal to zerdhe steady-state solution of Following the calculations presented in Appendix B, we
Eq. (5), satisfying the condition of zero probability flux, is get an expression for

) 4u 5 3q 3q
a(A)=(1+m)| 5 T(2p) (3= 20)(1+2u)| 2(1-2p) +(5—4p) 21+ 205
3g | 3q |
x| Vol (- 2) (1-2p) 2(1—277) +2F(2mr<%—2m<1+2mHgn—zm(l—zm 2(1—2,7)
9q ; 3(3—4w)q)|| "
X 2(1+2,u,)+2(1—+77) +TRu)I'(3—2w)(1+2u) 2(1—2/,L)+2(1—_|_7]) , (20

whereu=3(7+q)/4(1+ 7). Note that, similarly to the case tem with additive noise only. For this we consider an oscil-
without additive noise, after a transition no additional lator with a quadratic nonlinearity and additive random
maxima appear in the system probability distribution and theforce.

sha;])e of this distribution is not qualitatively chandétg. The oscillator under consideration can be described by
2(b)].
Next we compare these analytical results with numerical X+ 28X+ w(z,(1+x+ yx2)x= w(z,bg(t), (22

simulations. The corresponding dependence@?) on 7

for different values of the parametqg is illustrated in Fig.  \yhere the friction factog is assumed to be sufficiently small
1. We see that additive noise of small intensity results in g, comparison with the natural frequenay,, &(t) is an
smoothing of the dependence of the mean oscillation ampligyternal force, which is a sufficiently broadband random pro-
tude squared on the multiplicative noise intensity: it becomegeags with zero mean value, the parameter responsible for
without the break inherent in a phase transition induced byhe noise intensity, and the tergx? is introduced to avoid
only multiplicative noise. If we increase the additive noisehe sojution going to infinityfcaused by the presence of an
intensity, the transition becomes less detectalfiy. 1, | nstaple singular point of Eq21) for y<0.25].

curve 3. At this point it is necessary to note that direct use of the

In a numerical experiment it is more convenient to calcu-goyker-Planck equatiof26] and its stationary solution does
late the variance of the corresponding variable instead of thgot show that the system probability distribution for vari-

mean amplitude squared. It is evident that the dependencieg g &) is qualitatively changed with increase of the
of these values on the noise intensity should be similar. Infgise intensity. However, as we learned from the example in
deed, in the case when the amplitdlés a slowly changing - the previous section, the transition can take place despite the
funct|02n, the variance is equal té\")/2. The dependencies acts that there is no noise-induced maximum in the system
of a(A%) on » found by numerical simulation of Eq1) for  propability distribution(see Fig. 2 and that the transition is
both the presence of additive noise and its absence are shoygt ghservable in the dependence of variance on noise inten-
also in Fig. 1. We find that near the threshold the simulationg;jty (see Fig. 1, curve)3 Obviously, the presence of moder-
match the analytical results very well and that the dependenyteyy strong additive noise makes every transition hidden and
cies forq=0 can be approximated by a straight line inter- ndetectable. Nevertheless, the mechanism of the noise-
secting the abscissa aj=0. With an increase ofp, the  induced transition is present in the model and, therefore, we

growth rate _of the varia_nce in numeri_cal simulations_ iScall this phenomenon hidden phase transition induced by
smaller than in the analytical results. This can be explainedqgitive noise

by the fact that the Krylov-Bogolyubov method is valid only 1o demonstrate the physical mechanism that is respon-
near a threshold. sible for the hidden noise-induced phase transition, we will
use the same procedure as for the calculation of subharmonic

lll. PHASE TRANSITIONS INDUCED resonancefl4]. First, we decompose into

BY ADDITIVE NOISE

A. Oscillator with quadratic nonlinearity X(H)=y(t)+x(t), (22)

In this section we show that the mechanism of the noise-
induced phase transition may exist also in an oscillatory syswhere x(t) is a random process satisfying the equation
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(a) (b)
50 r . T v 20 T T v T T
45 1 1841 1 FIG. 2. The system probability distribution
40 1 16 1 for a pendulum.(@) The case without additive
n 23 ] I 1 noise. The probability distribution@(aA2)
% s | %10 | =w(A)/2aA for »=0.01 (curve ) and »=0.2
lg 20 1y 8l )l (curve 2. (b) The case with additive noise. The
15 6 ] dependence of W(aA?)=w(A)/2aA for q
10l \2 4 1 =0.01/(1+7) and »=-0.2, 0, and 0.2 for
503 2 i curves 1-3, respectively.
00 0.02 0.04 0.06 0.08 0.1 OO O.I05 Oil O.IlS 0.2 0.25 0.3
an? ahn2
X+ 2B+ whx = wib(t). (23  Wwhere
Now we will show t_hat _the system d_e_scribed by_ th_e vari- 300(2)K1 3y( 157(0(2)
abley undergoes a noise-induced transition. Substituting Eq. n= -1, a=—|1-——|(K,+Kjy),
(22) into Eq.(21) and taking into account Eq23), we get 2p 4 8B

the equation for the variablg
9y%A3
4

Sin 2wq 7+

0
J+28y+ w3{L+y+ £(0+ WY+ 3Ny =iV, a= | oxtes )

(24

where £,(t)=—x2()[1+vyx(t)] is additive noise and X (3 sinwgr+sin 3‘007))0'7'

&E(1)=x (1) [2+ 3yx(t)] is multiplicative noise. Comparing

Eq. (24) with Eq. (1), we find that these equations are simi- /. (t) and ¢,(t) are white noises with intensities
lar. In the absence of additive noi§g(t), Eq.(24) is similar

also to Eq.(1) in [1], except that the role of the random 9,2A2
processé(t) is played by the noisé&,(t). In the previous Ni=| K+ ———(K,+Kj) | A2
section we have shown analytically and numerically that in 16

the oscillator described by such an equation multiplicative
noise causes a phase transition. Hence, the ngigg is  an
responsible for the phase transition, whereas, as will be seen
from subsequent results, the additive noise makes the transi- Y
tion hidden. Ny=2Ko+ Kyt —5= (Kot Ky),

An approximate analytical analysis of H&4), in view of
Eq. (23), is possible in the specific case when the randomegpectively, Ki=x(200)/2, K=k (00)2, K
force in Eq.(23) is nonresonant. Owing to thig(t) is suf- =k, (3w0)/2, Ko=k,(0)/2, andk,(w) is the spectral den-
ficiently small, and we can ignore in E@4) both£,(t) and  sity of the random procesg(t) at the frequencyy.
3yx?y. As a result we obtain the following approximate solving the Fokker-Planck equation associated with Egs.

2A2

equation fory: (26), we get the probability densitw(A):
y+2By+wi[1+y+2x+yy(y+3x)ly=0. (25 W(A) = CA@7= DI+ 7)(1 4 A2)~[(2+Sm)r+3al2r (1),
(27)
Putting y=A(t)cosy(t)+---, where (t) = wot+ ¢(t), and
using now the Krylov-Bogolyubov method for stochastic where
equations, we obtain the following truncated equations for 942 Kot K
A(t) and ¢(t): = Y Ko Rs
16 K;
A=(n—ah®)A+woli(t), =M1+ wola(t), (26) From the normalization condition we find
|
a+r97r3”/2(1+n) I'G(at+rxy)/2r(1+mn)) for =0
C=2X% a I'(Bn/2(1+ »)I'(3al2r(1+ 7n)) (28)

0 for »=<0.
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@ 0.35 T T T T T T T
0.3F 4
[} 0.25 -
O 1.
g
% 0.2 b
> w0
0.15 -
0.1 b
0.05} .
o I} I3 il L 1 1
o 6 0.5 1 1.5 2 2.5 3 3.5 4
-]
§ m
s FIG. 4. The spectral density of the noise used in numerical
GEJ simulations for the oscillator with quadratic nonlinearity to exclude
the resonant frequency. The noise is passed through a bandpass
filter.
"0 10 20 a0 5 0 50 60 70 pendence Ofrzr, which can be treated as an order parameter,
b on the parametdn?, which can be regarded as temperature,

FIG. 3. Dependencies of the first moments of the simulatedS well approximated by the straight line described by the

: 2 _ 2_ K2 ~ ;
solutions onb? for y=0.251, wo=1, 8=0.1. (a) variances<rf, equat|oncryr—0.056(0 ber), wherebg~4.1. This means

(curve D, oi (curve 2, o2 (curve 3, alnda§rr (curve 4; (b) mean  that the critical index is equal to [ee Fig. 8a)].

value(y) (curve 1, (y,) (curve 2, and(y,,) (curve 3 for the same (2) Figure 3b) demonstr_ates that we can use as an order
value of y. parameter not only the variance, but the mean value as well.

Close to the critical point the dependence(gf) on b? can
It follows from here that the probability density of the am- be approximated by the straight lingy,)=—0.0256>

plitude turns out to be & function for <0, as for the —bgr).
pendulum considered ifi]. (3) To reveal the influence of the termy3?y that was
Using Eqs.(27) and (28) we calculate{A?) ({-) denotes dropped in the analytical consideration, we also numerically
the statistical average simulated Eq(25). The results are given in Fig(8 (curve
4) and Fig. 3b) (curve 3. We see that the phase transition
37 4y f ~0 occurs for a smaller value & if in the reduced equation the
(A2)={ 3a+r(2+5y) 3y—4r or n= (29)  term 3yx®y is ignored, i.e., this term suppresses the phase

transition[compare curves 2 and 4 in Figa®]. This is also
attested by the fact that the slopes of the dependencie§ of
Note that the solution found is valid only for)8K,+Ks) ando? on b? are essentially different. Thus, the numerical
<4Kj. simulations have shown that in the absence of additive noise

Thus, we have shown analytically that in the absence of1 Only, we obtain a clearly defined phase transition. As
the additive noise&t; and the term 32y, in a system de- Mmentioned above, the additive noige makes the transition
scribed by Eq(24), a noise-induced phase transition indeedhidden(see the dependence faf). It is interesting that the
occurs. As shown below, numerical simulations demonstratdependence for? is close to that forai; the difference
that this transition remains well defined if the term@y is  appears only for large values of the paraméteFhis means
included; though the additive noigg makes it hidden. The that close to the critical point the influence of the ngig¢)
main results of our numerical simulations are as follows. is negligibly small.

(1) The results of numerical simulation of the complete (4) To reduce the noise spectral density at the frequency
equationg23) and(24) in the case of sufficiently broadband wg, we have passed the noi§&) through a bandpass filter
noise, which can be considered as white noise, are shown inith central frequency @, and bandwidthv,. The spectral
Fig. 3. For comparison, the results of numerical simulationdensity of this noise is shown in Fig. 4. We see that it is
of Eq. (24) after dropping only the additive noisg(t) are  indeed very narrowband in the vicinity ab,. Next, we
also given there. We call Ed24) with &,(t)=0 the “re-  simulate Eqs(23) and(24) using this filtered noise a&(t).
duced equation” and denote its solution Yay. The solution For comparison we simultaneously simulate the reduced
of Eq. (25) is denoted byy,, . We see that for the complete equation(24). Figure 5 illustrates that, even though the spec-
equations, which are equivalent to the initial equation, theral density of the filtered nois&(t) at wq is very small, the
phase transition is practically undetectable and very noisynfluence of the noisé;(t) and of the term 32y is essen-
(curve 1. For the reduced equation, the phase transition igial. The reason is that the component of the nqiég at w,
clearly defined(curve 2. Close to the critical point the de- is not small because it is resonant. The smooth increase of

0 for »=0.
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0.7 FIG. 6. A phase transition via on-off intermittency. The time
-0.8 series ofx(t) (a) and(c), andy,(t) (b) for b2=20 (a) and (b) and
-0.9 b2=4 (c). The remaining parameters are the same as in Fig. 4.
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b> well defined just by dropping some terms from the initial
system equation. We leave this as an open question in the
FIG. 5. Dependencies of the first moments of the simulatedyresent paper.
solutions onb? obtained using bandpass filtered noit®. Vari-
anceso; (curve 1, 0'5[ (curve 2, ando? (curve 3; (b) mean values

B. Elect hanical vibrat
() (curve 3 and(y,) (curve 2. ectromechanical vibrator

An electromechanical vibrator energized from a source of
periodic alternating current has been considerd@1n14]. It
consists of a sprung plate attracted to an electromagnet with
a power supply circuit forming an oscillatory circuit. We
demonstrated that under certain conditions powerful low-
frequency oscillations of the plate can be excifed,14.

§r with increasingb? from b2, onward is explained by the

fact that the influence of the termy3?y is less than for
broadband noise.

Coming back to the initial equatiof22), we decomposed
the initial variablex into the sum of variableg and noisey,

o

for x andy are very similar(Figs. 3 and b Dropping the
additive constituent of the noise from the equationyfpowe
get a clearly defined transition with an increase of noise in-
tensity. From this we conclude that the initial equation de-

the vibrator with a random power source is presented in Fig.

The equations of this vibrator can be written as

scribes a system in which a hidden nonequilibrium phase d? [L(x)I dl 5
transition is induced by additive noise. g2\ T T20rgy H ol =€),
The transition under consideration is similar to the transi- 0
tion studied in the previous section, not only in the physical 2
X ; . o~ d“x dx
mechanisnmautoparametrical and parametrical excitation, re- o+ 28—+ vgx: F(x,1) (30)
spectively, but also in the sense that both these transitions dt dt

occur via on-off intermittency27,28. This is clearly visible

from the shape of, (t) [Fig. 6(b)]. Because of additive noise Where x is the plate displacement,is the current in the

the intermittency forx(t) is hidden[Fig. 6@]. As for a  oscillatory circuit, L(X)=Lo(1+a;x+ax*+agx’+:--) is

pendulum with randomly vibrated suspension axis and addithe inductance of the coil with a core depending on the size

tive noise[28], the intermittency is defined more clearly for of the clearance between the plate and the cére;R/2L,

b<b,, [Fig. 6a)]. and &,= a/2m are the damping factors for the oscillatory
At the current stage of investigation we have shown thatircuit and the plate, respectivelf),=1/YLoCo and vg

an oscillator with quadratic nonlinearity may contain a=k/m are the corresponding natural frequencix,)

mechanism for a phase transition induced only by additive= (1%/2)(dL/dx) is the pondermotive force acting on the

noise. The strong influence of additive noise makes this tranplate, andé(t) is a random process that is proportional the

sition undetectable in the initial equation, but we guess that ielectromotive force of the power source. We §@t) to be

is possible to find a situation when the transition becomeslescribed by the following equation:
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FIG. 7. A schematic image of an electromechanical vibrator |, 0.10 |
. . . : =
with random power source is the plate displacemen; the fric- .
tion, L the inductancel the currentR the resistanceg(t) the ran- o
dom process responsible for the electromotive force of the power © o5t

source, andk the rigidity of the springs.

wherex(t) is white noise. It follows from Eq(31), that the FIG. 8. The noise-induced transition in the electromechanical
spectral density of(t) peaks at the frequenay. vibrator caused by a mechanism similar to combination resonance.

Numerical simulation of Eq430) shows that from a cer- The dependencies af? (a) and 1@-2 andX (b) on k? for w=1,
tain value of the power source intensity, low-frequency 0s€,=0.9, »,=0.05, 6;,=0.1, §,=0.005,L,/m=0.1, a;=1, a,=
cillations of the plate appear. The dependence of the variance0.5, anda;=0.1.
of these osciIIations(f)z() on k2, which is proportional to the
noise intensity, is illustrated in Fig.(&. The form of this can be partially suppressed by additional harmonic action
dependence closely resembles the corresponding dependerfig]. But, in contrast to the pendulum, the suppression oc-
for a pendulum with a randomly vibrated suspension axisurs at low-frequency action rather than at high frequency. If
and additive nois¢see Fig. 1L We find from this plot that, the action frequency is high, the action has little or no effect
for sufficiently large values ok?, the dependence can be on the variance of the plate oscillations. To describe the ad-
apprOXImated by a straight line described by the equatiomlitional action, we add the teracoswt to £(t) on the right
02=0.3(k*—0.025). Taking into account the similarity with of the first equation of E(30). Under low-frequency action
the dependencies for noise-induced transitions in a penda considerable constant displacement of the plate appears.
lum, we can take the point where this straight line crosses th&herefore, the study of the suppression is conveniently per-
abscissa as the threshold of a noise-induced transitiofiormed using the variance of the plate velocity instead of the
Hence, the critical value df is equal to 0.158. Unlike the plate displacement. The dependencies of this varian@a (
variance 0)2(, the variance of the current fluctuationa,z( on the action amplitude for a fixed value of the action
=1?) increases with an approximately constant ratekas frequencyw and onw for a fixed value of are shown in Fig.
increases. The corresponding dependence is presented in Fid.. We see that for a fixed value of the frequenay (
8(b) (curve 1. It can be approximated by the straight line =0.2) the varlancer initially decreases as the action am-

=0.07%?. Owing to the presence of a quadratic nonlin- plitude increases, and then abruptly increases owing to exci-
earlty, the mean value of the plate displacement is nonzerdation of oscillations at the frequeney. For a fixed value of
The dependence of on k? is also shown in Fig. @) (curve  the action amplitude, the dependencer@fon  has a mini-
2). mum whose location depends on the amplituald Fig.

Typically for noise-induced transitions that lead to the 11(b)].
excitation of oscillationg28], for k<k. one can detect on-
off intermittencylike behavior in oscillations of the varialie
[see, for example, Fig.(8)]. With increase ok this effect
disappears. An example of the oscillationsxpf, and ¢ for
k>k, is given in Fig. 9b).

Power spectra of the random source and excited oscilla-
tions are shown in Fig. 10. It is clearly seen that we deal with In this section we consider an example of a system under
high-frequency excitation. The mechanism responsible fothe combined action of additive and multiplicative noise.
the excitation seems to be similar to combination resonancéoth multiplicative and additive noise can induce a transi-

As in the case of a pendulum with slight additive noise,tion, and, what is especially interesting, a combination of
noise-induced oscillations of the vibrator under considerationtheir actions stabilizes noise-induced oscillations. To demon-

IV. TRANSITIONS INDUCED BY BOTH
MULTIPLICATIVE AND ADDITIVE NOISE:
STABILIZATION OF NOISE-INDUCED OSCILLATIONS
BY ADDITIVE NOISE
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FIG. 9. On-off intermittency in the vibrator. Examples of oscillations of the plaje ¢f the current in the oscillatory circuit), and of
the power sourcéé) for k=0.08 (a) andk=0.3 (b).

strate these effects, we use a standard epidemiological modefectiveg. Let us note that Eqs(32) do not contain the

for the description of seasonal oscillations of childhood in-variableR; hence these equations can be considered indepen-
fections, such as chickenpox, measles, mumps, and rubelldently of Eq.(33).

under the influence of variations of the contact rate of chil- It is easy to show that Eq§32) for b=by= const, and for
dren susceptible to infection with infective children. This any values of the remaining parameters, have one aperiodi-
model has been studied in detail both in the case of periodically unstable singular point with coordinat&=1E=1
variation of the contact rat22—24,29 and in the case of =0, and one stable singular point with coordinates

random variation of the contact rat&5,29. Here we dwell
only on one important aspect of this problem, namely, on the

+ + +
stabilizing influence of a combination of additive and multi- so:(m a(m+g) , Eo= m__mim g),
plicative noise on the excitation of induced oscillations. abo m+a abo
The model equations are
. ) . am m a4
S=m(1-S)-bSl, E=bSI-(m+a)E, o= mta)mig) by’ (34)
I=aE—(m+g)l, (32 o _
If the parameteb varies with time then the variabl&s E
= and | will oscillate, and these oscillations will be executed
R=gl-mR (33

around the stable singular point with coordinat@$. There-

where S is the relative number of children susceptible to fore, it is Eonvenient tf substitute into_Eq(§2) the new
infection, E is the relative number of children exposed butvi”ablesx_S/S‘)fl’ y_E/EOfl’ andz_—l/lo—l. .P.uttlng
not yet infective,l is the number of infective childrerR is b=Dbo[1+D,f(t)], wheref(t) IS a function d(_ascnblng_the
the number of children recovered and immunen i¢ the shape .Of the contact rate variation, we rewrite HG8) in
average expectancy time,alis the average latency period, the variables, y, z

1/g is the average infection period, abds the contact rate

(the average number of susceptibles in contact yearly with  X+mx= —bglo[1+b,f(t)](x+z+x2) —bgb4lf(t),

(a) (b)

15

20

10
I n FIG. 10. The power spectra of the random
10 1 power sourcda) and of the solutiorx (b).
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FIG. 12. A noise-induced phase transition in the SEIR model.
The dependence @f? on the parametds, in the case of a random

Nb“ 6 variation of the contact rate. The solid line represemnt$
ol =0.47(p,—0.066).
2 r . . . . .
this case the variance of oscillations is equal to zerobfor
%05 015 055 095 <b. and goes to infinity shortly after the noise intensity

o) represented by the parametey exceeds its critical value.
The same situation is observed if additive noise is absent but
multiplicative noise is present. Now it is clear that the point
b,=b, is a point of noise-induced phase transition, which
can be induced by both multiplicative and additive noise.
The physical mechanisms responsible for this effect are
likely to be the same as for the penduly®ec. 1) and the
nonlinear oscillatofSec. Il A), respectively.

It is even more interesting that the combined action of

FIG. 11. The dependencies of the variam:é on the action
amplitudea for «=0.2 (a) and on the action frequencay for a
=0.3(b). For w=0.2,a>0.4, the variance abruptly increases ow-
ing to excitation of oscillations at the frequeneyand goes, in fact,
to infinity.

y+(m+a)y=(m+a)[1+b;f(t)](x+z+x2)

+(m+a)b,f(t), (35)  additive and multiplicative noise performs a stabilization of
noise-induced oscillations: in this case the dependence of
z+(m+g)z=(m+g)y. variance on noise intensity does not go to infinity. Again, as

for previously considered mode]28], the transition can be

In Egs.(35) the termb; f(t) can be considered as an externalaccompanied by the effect of on-off intermittency. In the
action upon the system. This form of the equations clearlybsence of additive noise one can observe on-off intermit-
shows that this action is not only multiplicative, i.e., para-tency near the thresholdig. 13.
metric, but additive as well.

Olsen and Schaffef23] set the following values of the V. CONCLUSIONS
parameters: m=0.02year!, a=35.84year!, g
=100year?, by=1800year?, andb,;=0.28. These param- We have studied in this paper the role of additive noise in
eters correspond to estimates made for childhood diseasesi@ise-induced phase transitions and have shown that it can
first world countries. We follow them. be nontrivial. We have found several phenomena by consid-

In [15] we supposed that the contact rdtevaries ran-  €ration of different typical models; each of them has demon-
domly with the main period equal to one year, i.&() strated a certain aspect of the problem. Consideration of a

=X(t)’ WhereX(t) is a random process that is a solution of pendulum under the action of multiplicative and additive

the equation noise has shown that, if a noise-induced transition occurs in
X+2my+6mx=KE(t), (36) 0.3
&(t) is white noise, and is a factor that we choose so that 02t
the variance ofy(t) is equal to 1/2. It is easily seen that the o4 |
spectral density ok(t) peaks at the frequenay=_27r. )
Noise-induced oscillations appear as a result of a noise- 0.0

induced phase transition. To show this let us consider Fig.

12, where the dependence @f on b, is presented. With an -01
increase of noise intensity, the intensity of noise-induced os- 02 ‘ ‘ .
cillations is increased too. For rather large>b,, this de- 0 500 i 1000 1500

pendence can be approximated by a straight line. The inter-

section point of this line and the abscissa can be taken as a FIG. 13. On-off intermittency in the SEIR model. An example
point of a transition—a threshold valu®,. To prove it let  of oscillations of the variablesandy for b, =0.099 for the case of
us drop the artificially multiplicative noise from Eg85). In multiplicative random action alone.
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the presence of additive noise, it is blurred by this noise and’he integral on the right-hand side of E@®2) can be ex-
becomes hidden. We have presented results of an analyticatessed in terms of a Whittaker functif®2]. As a result we
study confirmed by numerical simulations. By the exampledind

of Sec. lll we have demonstrated that there are mechanisms

which allow additive noise alone to induce a hidden transi- ., _ Vr 3 |\t 3q

tion. Consideration of an epidemiological model has shown “4aqtP e\ 2(1+ ) ex 4(1+ n)
that, moreover, there exist nonlinear systems in which only

the combined action of multiplicative and additive noise W 3q ) (B3)
causes stable noise-induced oscillations. In such systems the el 21+ ) )

joint influence of additive and multiplicative noise can be
interpreted as the stabilization of noise-induced oscillationswhereu=3(7+q)/4(1+ 7).

In the present study we have considered only transitions that We obtain the expression fdC in explicit form in the
lead to the excitation of oscillationée.g., in contrast to limiting case when the additive noise intensity is small com-
[20,30,31). It should be mentioned also that we have re-pared to that of the multiplicative noise, so that

cently shown in[19,2Q that the role of additive noise may
also be crucial in noise-induced transitions that lead to the
creation of a mean field in a spatially extended system.

q<1. (B4)

In this case we can use a representation of the Whittaker
function W, ,(z) in terms of two other Whittaker functions
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APPENDIX A: LANGEVIN EQUATIONS I'(2u)
=M, _,(2). B5
The following Langevin equations can be related to the L(12+pu=N) N W2 (85

Fokker-Planck equatiofb) in view of Egs.(10) and (11): .
We then expand each of the functiord, ,(z) and

M, - .(2) in powers ofz [32]:

I'(=2up)
_ 7K
r'/2—u—N»)
1-2(\—
(1 #“'")
wherel4(t), £12(t), £21(t), and,,(t) are white noises with ( )
zero mean value and uncorrelated wihThe intensities of T(2u) 1-2(N+p)
these noises ar;;, Kyp, Ky1, andKy,, respectively. We mz‘ ( WH”
note that even in the case WitQ2=0 Eqgs.(37) differ from K K
that derived in[26]. The reason is that there the variable (B6)

=In A in place of A was used, i.e., the correlation between - .
the noiseé(t) and the amplitudeéA was implicitly ignored Substituting Eq(B6) into Eq. (B3) we get

. 3a)§ wé
A:ﬁ n— TCYAZ e

o
A+ SA Kot 7A§11(t) + wol1A(1),

W, .(2)= ﬁem( - ;

b= wiM+ wo| Lon(t)+ (A1)

ézz(t))
A ]

[14,1,23 C—l_ \/; F(_Zﬂ) m 1+ q +...)
s _
APPENDIX B: CALCULATIONS IN THE CASE 4a|I(3/2=2p) A1+2p)(1+7)
WITH ADDITIVE NOISE C(2u) (2(1+ 7) 2u
The dependence of the mean amplitude squared on the I'(3/2) 3

multiplicative noise intensity in the case where additive 3(3—4u)q

noise also acts on the pendulum can be calculated as follows. x| 1+ K 4. ) (B7)
Upon integrating Eq(19) over ¢ and calculating the integral 4(1-2u)(1+7)

within the exponential, we obtain The expression14), obtained in the absence of additive

W(A)=27AW(A, )= CAZ(AZ+qg/a)3@- DAL+ noise, follows at once from EqB7) for q—0.
The probability distribution(B1) for q#0 differs essen-

3aA? tially from Eq. (15): first, it is not aé function for <0 and,
XA T 51T ) (B secondlyw(A)=0 for A=0.
Using Egs.(B1) and(B3) we can calculatéA) and(A?).
It follows from the normalization condition that For example, fo{ A?) we obtain
o 2
C—l: J AZ(A2+q/a)3(q—l)/2(l+ 7) exr{ — —3aA dA. a<A2>= 3Q(1+ 77) W,u—3/2wv+1/2[3q/2(1+ 77)] .
0 2(1+7) Vo2 W,_1,[30/2(1+ )]

(B2) (B8)
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Taking into account the recursion relatipde]
Wi u(2)=VZW 172,04 1742) + (3= N = )Wy _1,,(2),
the expressioliB8) can be rewritten as

W/.L*Z,,U,[3q/2(1+ 7])]
(B9)

a(A?)=(1+ )| 1-(3-2p)

The expression fofA?) can be obtained in explicit form
only with the constraint(B4). Using Eg. (B6) we find

PRE 61

W, 2u(2) 2 [ﬁ
W/,L—l,/,L(Z) (3_41“’)

- F(=2p)2(1-2p)

X[2(142u)+52]+T(2)T (2 —2p)

4p

X 1—?)z#(1+2ﬂ)[2(1—2ﬂ)

+(5-4u)7] (gl“(—Z,u)Z“(l—Z,u)[Z(l

+2u)+32]+T (2T (2 —2u)z #

X(1+2u)[2(1-2p) +(3—4u)Z]

(B10)

for w,_,,(2)/W,_,,(z) the following approximate Substituting Eq.(B10) in Eq. (B9) we get the required

expression:

Eq. (20).
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